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Abstract

Powerlifting is a sport consisting of three main barbell lifts,
the squat, the bench press, and the deadlift. For each
movement, there are three attempts to perform. All three
of these movements are judged by three judges, two on the
sides, and one in the front. These lifts must be performed
to a certain standard in order to be called a “good lift.”
This paper examines the barbell squat and seeks to utilize
existing computer vision technology to judge squat depth.
For a squat to be considered “depth” in Powerlifting, the
hip crease must be below the top of the knee. To do this,
recent pose estimation models are used to generate pose
estimations from videos of a human squatting, as well as key
points corresponding to joints and other body parts. The
pose estimation video output and key points are then fed
into a trained neural network that predicts if a squat meets
the depth standard. We demonstrate that our frameworks
for judging squat depth need massive improvement and that
more, state-of-the-art methods should be investigated for
their application to this problem.

1. Introduction

Pose estimation is a fundamental problem in computer
vision and artificial intelligence, with many applications.
The way pose estimation is done is predicting locations of
key points, like joints in a given video. Human 3D pose
estimation aims to predict and map key points from a 2D
video into 3D space. In the last decade, there have been
multiple models developed that aim to solve this problem.
This paper is an application of this solution to another
problem, being judging in the sport of Powerlifting.

1.1. Powerlifting Background

Powerlifting is a sport consisting of three main barbell lifts,
the squat, the bench press, and the deadlift. For each
movement, there are three attempts to perform. All three
of these movements are judged by three judges, two on the
sides, and one in the front. These lifts must be performed to
a certain standard in order to be called a “good lift.” Judges
will either give a white light for a good lift, or a red light for
a lift that is no-good. To be counted as a good lift, a lifter
must receive at least two white lights from the judges. If a
lifter receives at least one white-light, they may contest the
judge’s decisions. The main rule that we are concerned with
for the purpose of this paper is the squat depth rule, where
the hip crease must reach below the top of the knee joint at
the bottom of the squat movement.

1.2. Motivation

Sometimes, judging in Powerlifting can be subjective,
because it is the perception of the judges that counts. An
innattentive or unfocused judge may not see if the lift was
performed to the set standard, and may very well red-light a
good lift, and vice-versa. It is possible that a seasoned judge
may also make a bad call, and red-light a good lift, or white-
light a bad lift. The motivation behind this project is to make
judging lifts at a powerlifting meet more objective than
subjective, which can be achieved with the use of computer
vision technology.

2. Related Work

Currently, the standard method for judging in powerlifting
involves three judges positioned at different angles: one
on the left, one on the right, and one in the center.
This setup is the standard in competitions. In higher-
level competitions, lifts are often recorded to address
any disputes about the judges’ calls. In such cases, a
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Figure 1. Diagram of a squat considered to be “depth.”[? ]

jury reviews the recordings and makes the final decision.
However, the judges’ decisions can sometimes be imprecise
and subjective. Integrating a computer-based evaluation
system could enhance both the accuracy and objectivity of
the judging process.

One option for analyzing squat depth with high precision
is the use of marker-based motion capture devices. These
systems involve attaching reflective markers to specific
points on the athlete’s body, which are then tracked by
multiple cameras placed around the performance area.
The cameras capture the motion of the markers in three
dimensions, enabling precise reconstruction of the athlete’s
movements.

Recent advancements in pose estimation using computer
vision, such as PoseFormer[? ], Detectron2[? 1,
and PETR-Pose [? ], offer unobtrusive, accurate, and
cost-effective alternatives to marker-based motion capture.
The primary techniques used in 3D pose estimation
involve convolutional neural networks (CNNs). However,
some models, such as PoseFormer and PETR-Pose, use
transformer-based networks.

CNNs excel at extracting local features from images
through convolutional layers, making them highly effective
for tasks that require localized information, such as
identifying keypoints in pose estimation. They are also
computationally efficient, enabling faster training and
inference compared to transformer models. However,
CNN s often struggle to capture global context due to their
limited receptive fields. This limitation can reduce accuracy
in complex scenarios involving occlusions or interactions
between multiple body parts. Transformer-based models
address this limitation with their self-attention mechanism,
which captures long-range dependencies and understands
the global structure of human poses. This capability makes
them more robust in handling occlusions within images,
particularly in scenarios where multiple body parts may be
partially or fully obscured.

For this problem, the goal is not to develop new 3D
pose estimation models but to apply existing models to a
specific, niche challenge. Our focus is on how the output

from these models can be utilized to determine squat depth
in powerlifting.

3. Data And Collection
3.1. Data Collection

The data for this project consisted of barbell squat videos
with a single person in focus. A single frame was manually
extracted from each video. Videos for this paper was
collected through publicly available videos on Instagram
and YouTube, as well as from friends of the authors. Videos
were cropped to isolate the person squatting. The dataset
included squat videos from multiple people at different
angles in order to make our decision making model more
robust. A total of 230 videos were collected for this project,
with one frame per video being used for the dataset.

3.2. Pre-Processing

To preprocess, frames were renamed, indexed, and given
an “Is Depth” attribute, annotated with a default boolean
false value. Frames were then manually annotated by one
author, Hunter, as he is an experienced powerlifter with a
lot of informal experience of judging squat depth. This
information was stored in a CSV file, with the index, frame
path, and Is Depth as columns. These frames were then
fed into our pose estimation model, provided by Google’s
MediaPipe, to generate landmarks.

3.3. Landmarks and Pose Estimation

When a frame is fed into the pose estimation model
provided by Google’s MediaPipe, an annotated image was
generated, and two sets of landmarks for body locations
were generated. The first set is a list of landmarks relative
to locations within the image, while the second set is a list
of landmarks of real-world positions in 3D space. Each
landmark has a corresponding x-coordinate, y-coordinate,
and z-coordinate, resulting in 99 numeric data points in
each set of landmark, for a total of 198 numeric points for
each frame. These values were stored in CSV files, with
each column corresponding to the the specific landmarks
and their respective x, y, and z values, along with paths
to the original frame, the annotated image, and the Is
Depth attribute. One CSV file contained only the image
landmarks, another contained only the world landmarks,
and the third contained both.

4. Methods and Experiments

In this section, we present multiple frameworks for judging
Powerlifting squat depth.

4.1. Comparison Test

As a baseline for the results, we performed a simple
comparison of the hip vertices to the knee vertices. This



Figure 3. An example of a “bad” pose estimation.

method utilized the 3D points generated from Mediapipe’s
pose landmarks, focusing on a series of height comparisons
to determine whether the hip vertices descended below the
level of the knee vertices during the squat.

4.2. Multi-Layer Perceptron

Leveraging the three different datasets from the output of
Mediapipe’s pose landmark detection algorithm, we use
a MLP classifier from sklearn to judge squat depth for
a variety of images.The features and labels are prepared
by removing unnecessary columns and selecting the target
labels. A hyperparameter grid is defined to tune the
MLP classifier’s hidden layer sizes, learning rates, and L2
regularization. Stratified k-fold cross-validation ensures
balanced class distribution. Multiple random states are
tested to evaluate model robustness, with stratified splitting
maintaining class balance during training, validation, and
testing to ensure that the small size of the data does not
heavily skew performance metrics. Standard scaling is
applied to standardize features, improving convergence.
GridSearchCV is used to find the best hyperparameters,
and the optimal MLP model is trained and evaluated
on validation and test sets. From experimentation, it
seems that standardization of the data provided the largest

improvement in accuracy of around 20% across all folds,
likely due to balancing feature importance and helping with
regularization.

4.3. Convolutional Neural Network

Using a Convolutional Neural Network on a set of squat
images, annotated with a boolean if it is depth or not, we
first preprocessed the data by normalizing the pixel values
by dividing the pixel values into the range of [0,1] as
neural networks perform better on normalized input. The
data is split into a 60/20/20 split before being converted
to numpy arrays. A model is then created using Keras.
The architecture includes: Three convolutional layers with
increasing filter sizes (32, 64, 128), each followed by max
pooling. A flattening layer to convert 2D data into a 1D
vector. A fully connected dense layer with 128 units and
ReLU activation. A dropout layer with a 50% dropout
rate to prevent overfitting. An output dense layer with
a sigmoid activation for binary classification The model
is then compiled using the Adam optimizer, binary cross-
entropy loss, and accuracy as the metric used to evaluate
performance. Given the limitation of having a small dataset,
anymore than three convolutional layers in the architecture
results in overfitting of the training data and a vanishing
gradient, resulting in the testing accuracy being 0.5, no
better than random guess.

5. Results

Overall, our frameworks performed poorly on our given
data. Much of this can be attributed to the very small dataset
and bad pose estimations generated by MediaPipe.

5.1. Comparison Test

For the baseline comparison of squat depth, we utilized
Mediapipe’s  world coordinates (WorldLandmarks)
and normalized coordinates (Landmarks) to evaluate
performance. Since this method did not require the use of a
neural network, we were able to process the entire ground
truth dataset without concerns about overfitting during this
part of the pipeline.

To assess the performance, we compared the ground
truth labels with the outputs from this baseline method. We
calculated the following metrics:

* True Positives (TP): Cases labeled as good depth where
the output also indicated good depth.

* True Negatives (TN): Cases labeled as bad depth where
the output correctly identified bad depth.

 False Positives (FP): Cases labeled as bad depth where
the output incorrectly identified good depth.

* False Negatives (FN): Cases labeled as good depth where
the output incorrectly identified bad depth.

For our 171 data points, the results were as follows:



World Coordinates Results:

¢ True Positives: 42
* False Positives: 82
¢ True Negatives: 7
 False Negatives: 40

Evaluation Metrics:

e Accuracy: 0.286
¢ True Positive Rate: 0.512
¢ False Positive Rate: 0.921
e Precision: 0.339

Normalized Coordinates Results:

¢ True Positives: 38

* False Positives: 79
¢ True Negatives: 10
» False Negatives: 44

Evaluation Metrics:

e Accuracy: 0.281

* True Positive Rate: 0.463

* False Positive Rate: 0.888

e Precision: 0.325

Both of these results indicate poor accuracy as over half
of the data set were given an incorrect result. Even
though the results for both coordinate types were similar,
we believe that the WorldLandmarks are a better choice
to use if we were to refine this process. This is due to
the WorldLandmarks providing real-world measurements
of the detected landmarks. This should minimize the effects
of variations in camera angle, resolution, or positioning
within the frame.

5.2. Multi-Layer Perceptron

In the MLP model, the validation and test accuracies show
significant variability across different random states, with
validation accuracies ranging from 0.46 to 0.78 and test
accuracies from 0.46 to 0.77. This indicates that the
model’s performance is highly dependent on the specific
data split, underscoring the need for a larger and more
diverse dataset to achieve consistent results. The average
confusion matrix for each random state suggests that while
the model generally performs better than random chance,
there is plenty of room for improvement in reducing false
positives and false negatives.

5.3. Convolutional Neural Network

For the convolutional neural network, the training accuracy
starts at around 0.53 and improves to approximately 0.68
by the 10th epoch. The validation accuracy, however,
fluctuates significantly, beginning at 0.37 and reaching
up to 0.61. This fluctuation suggests that the model is
struggling to generalize well to unseen data, due to the
small dataset size and the inherent variability in squat
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Figure 6. MLP Random State and Accuracy Correlation

images. The test accuracy achieved is approximately 0.54,
which is only slightly better than random guessing. This
result reinforces the observation that the model struggles to
generalize from the training data to the test set because of
possible overfitting and lack of a sufficient data samples for
the model to effectively learn from.
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Figure 8. CNN Confusion Matrix.

Training and Validation Loss

085 — Training Loss
Validation Loss

Epochs
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6. Conclusion

Our solution is very limited given the pose estimation model
chosen, and lack of a vast amount of data to train on.
Even given these circumstances, these frameworks are not
effective in judging squat depth. This is mainly in part due
to the pose estimation model chosen. These frameworks
would not be fit for judging a squat in Powerlifting under
any circumstance.

6.1. Areas For Future Improvement

More data should be collected and worked with for this
project. This project was heavily limited by the amount
of data collected, as collection of data was very tedious
and time-consuming. More data would allow for more
robust training and better generalization of our decision
making machine learning models. Multiple angles of the
same squat would be ideal, as in a Powerlifting meet
setting, there are three judges that judge the lift at three
different places. Cameras would be at the same height
as the lifter’s kneecap, which would be most effective in
capturing the depth of the squat. The quality of the data
should also be improved. Most videos were obtained by
screen-recording on Instagram on an iPhone 15, which,
while being better than nothing, severely hurts the quality
of the actual video in comparison. In addition, more pose
estimation models should be used to compare performance
between MediaPipe’s solution and other, more recent and
state-of-the-art methods. For this project, trying to use
other, more recent, open source models took too long to
learn and setup. MediaPipe was by far the easiest to get
started with. Many of these newer, open source models, also
use a dataset that was not able to be accessed, that being the
Human 3.6 dataset. Our pose estimation model was also
heavily affected by occlusions and obstructions. The model
sometimes was not even being able to estimate a pose from
a given image due to the occlusions and obstructions. Using
more state-of-the-art models and methods and comparing
their performance given these occlusions and obstructions
would be helpful in solving this problem.
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